ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Из концов дуги в 200° проведены касательные до взаимного пересечения. Найдите угол между ними.

Вниз   Решение


На каждой стороне параллелограмма выбрано по точке (выбранные точки отличны от вершин параллелограмма). Точки, лежащие на соседних (имеющих общую вершину) сторонах, соединены отрезками. Докажите, что центры описанных окружностей четырёх получившихся треугольников – вершины параллелограмма.

ВверхВниз   Решение


Докажите неравенство Чебышёва     при условии, что   a1a2 ≥ ... ≥ an   и
b1b2 ≥ ... ≥ bn.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 258]      



Задача 61076

Темы:   [ Классические неравенства (прочее) ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что при любых вещественных aj, bj  (1 ≤ jn)  выполняется неравенство

Прислать комментарий     Решение

Задача 61357

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Докажите неравенство     для положительных значений переменных.

Прислать комментарий     Решение

Задача 61386

 [Неравенство Чебышёва]
Темы:   [ Классические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Докажите неравенство Чебышёва     при условии, что   a1a2 ≥ ... ≥ an   и
b1b2 ≥ ... ≥ bn.

Прислать комментарий     Решение

Задача 64831

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для положительных значений а, b и c выполняется неравенство  .

Прислать комментарий     Решение

Задача 65428

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Сумма неотрицательных чисел x1, x2, ..., x10 равна 1. Найдите наибольшее возможное значение суммы  x1x2 + x2x3 + ... + x9x10.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .