ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 258]      



Задача 109886

Темы:   [ Неравенство Коши ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 9,10

Докажите, что если a, b, c – положительные числа и  ab + bc + ca > a + b + c,  то  a + b + c > 3.

Прислать комментарий     Решение

Задача 115591

Темы:   [ Классические неравенства ]
[ Проекции оснований, сторон или вершин трапеции ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Окружность вписана в равнобедренную трапецию ABCD с основаниями  BC = a  и  AD = b.  Точка H – проекция вершины B на AD, точка P – проекция точки H на AB, точка F лежит на отрезке BH, причём  FH = AH.  Найдите AB, BH, BP, DF и расположите найденные величины по возрастанию.

Прислать комментарий     Решение

Задача 111259

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10

Произведение положительных чисел х, у и z равно 1. Докажите, что  (2 + х)(2 + у)(2 + z) ≥ 27.

Прислать комментарий     Решение

Задача 55237

Темы:   [ Неравенство Коши ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

Высота прямоугольного треугольника, опущенная на гипотенузу, равна h.
Какую наименьшую длину может иметь медиана, проведённая из вершины большего острого угла?

Прислать комментарий     Решение

Задача 61402

Тема:   [ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Выведите из неравенства задачи 61401

  а) неравенство Коши-Буняковского:  

  б) неравенство между средним арифметическим и средним квадратичным:   ;

  в) неравенство между средним арифметическим и средним гармоническим:   .
  Значения переменных считаются положительными.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .