ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.

   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1110]      



Задача 64551

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3

Сережа и Миша, гуляя по парку, набрели на поляну, окруженную липами. Сережа пошёл вокруг поляны, считая деревья. Миша сделал то же самое, но начал с другого дерева (хотя пошёл в ту же сторону). Дерево, которое у Сережи было 20-м, у Миши было 7-м, а дерево, которое у Сережи было 7-м, у Миши было 94-м. Сколько деревьев росло вокруг поляны?

Прислать комментарий     Решение

Задача 64570

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.

Прислать комментарий     Решение

Задача 64571

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Автор: Шноль Д.Э.

Одуванчик утром распускается, два дня цветёт жёлтым, на третий день утром становится белым, а к вечеру облетает. Вчера днем на поляне было 20 жёлтых и 14 белых одуванчиков, а сегодня 15 жёлтых и 11 белых.
  а) Сколько жёлтых одуванчиков было на поляне позавчера?
  б) Сколько белых одуванчиков будет на поляне завтра?

Прислать комментарий     Решение

Задача 64651

Темы:   [ Текстовые задачи (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9

Дед Мороз раздал детям 47 шоколадок так, что каждая девочка получила на одну шоколадку больше, чем каждый мальчик. Затем дед Мороз раздал тем же детям 74 мармеладки так, что каждый мальчик получил на одну мармеладку больше, чем каждая девочка. Сколько всего было детей?

Прислать комментарий     Решение

Задача 64667

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 10,11

Дана таблица размером 8×8, изображающая шахматную доску. За каждый шаг разрешается поменять местами любые два столбца или любые две строки. Можно ли за несколько шагов сделать так, чтобы верхняя половина таблицы стала белой, а нижняя половина – чёрной?

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .