ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Логика и теория множеств
>>
Математическая логика
>>
Математическая логика (прочее)
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат. Решение |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 205]
На доске нарисованы три четырёхугольника. Петя сказал: "На доске нарисованы по крайней мере две трапеции". Вася сказал: "На доске нарисованы по крайней мере два прямоугольника". Коля сказал: "На доске нарисованы по крайней мере два ромба". Известно, что один из мальчиков сказал неправду, а двое других – правду. Докажите, что среди нарисованных на доске четырёхугольников есть квадрат.
Математик с пятью детьми зашёл в пиццерию.
На острове живут лжецы, которые всегда лгут, и рыцари, которые всегда говорят правду. Каждый из них сделал по два заявления: 1) "Среди моих друзей – нечётное количество рыцарей"; 2) "Среди моих друзей – чётное количество лжецов". Чётно или нечётно количество жителей острова?
Квадрат 4 × 4 называется магическим, если в его клетках встречаются все числа от 1 до 16, а суммы чисел в столбцах, строках и двух диагоналях равны между собой. Шестиклассник Сеня начал составлять магический квадрат и поставил в какую-то клетку число 1. Его младший брат Лёня решил ему помочь и поставил числа 2 и 3 в клетки, соседние по стороне с числом 1. Сможет ли Сеня после такой помощи составить магический квадрат?
В комнате стоят 20 стульев двух цветов: синего и красного. На каждый из стульев сел либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Каждый из сидящих заявил, что он сидит на синем стуле. Затем они как-то пересели, после чего половина из сидящих сказали, что сидят на синих стульях, а остальные сказали, что сидят на красных. Сколько рыцарей теперь сидит на красных стульях?
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 205] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|