ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У Незнайки есть пять карточек с цифрами: 1, 2, 3, 4 и 5. Помогите ему составить из этих карточек два числа – трёхзначное и двузначное – так, чтобы первое число делилось на второе. Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 598]
Существует ли такая цифра а, что aaa(a–1) = (а – 1)а–2.
Юра записал четырёхзначное число. Лёня прибавил к первой цифре этого числа 1, ко второй 2, к третьей 3 и к четвёртой 4, а потом перемножил полученные суммы. У Лёни получилось 234. Какое число могло быть записано Юрой?
Верно ли, что любое натуральное число можно умножить на одно из чисел 1, 2, 3, 4 или 5 так, чтобы результат начинался на цифру 1?
У Незнайки есть пять карточек с цифрами: 1, 2, 3, 4 и 5. Помогите ему составить из этих карточек два числа – трёхзначное и двузначное – так, чтобы первое число делилось на второе.
На длинной ленте бумаги выписали все числа от 1 до 1000000 включительно (в некотором произвольном порядке). Затем ленту разрезали на кусочки по две цифры в каждом кусочке. Докажите, что в каком бы порядке ни выписывались числа, на кусочках встретятся все двузначные числа.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 598] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|