Страница:
<< 10 11 12 13 14
15 16 >> [Всего задач: 76]
|
|
Сложность: 4- Классы: 9,10
|
В каждой клетке таблицы 9×9 записано число, по модулю меньшее 1. Известно, что сумма чисел в каждом квадратике 2×2 равна 0.
Докажите, что сумма чисел в таблице меньше 9.
|
|
Сложность: 4- Классы: 8,9,10
|
В таблице 2005×2006 расставлены числа 0, 1, 2 так, что сумма чисел в каждом столбце и в каждой строке делится на 3.
Какое наибольшее возможное количество единиц может быть в этой таблице?
64 неотрицательных числа, сумма которых равна 1956, расположены в форме
квадратной таблицы по восемь чисел в каждой строке и в каждом столбце. Сумма
чисел, стоящих на двух диагоналях, равна 112. Числа, расположенные симметрично относительно любой диагонали, равны. Докажите, что сумма чисел в любой строке меньше 518.
|
|
Сложность: 4 Классы: 8,9,10
|
На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа k, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес k самых тяжелых монет из первой кучки не больше суммарного веса k самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше x, на монету веса
x (в обеих кучках), то первая кучка монет окажется не легче второй,
каково бы ни было положительное число x.
|
|
Сложность: 4 Классы: 9,10,11
|
Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не
превосходит удвоенного числа в его середине.
Страница:
<< 10 11 12 13 14
15 16 >> [Всего задач: 76]