ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

В парке два года проводили озеленительные работы: спиливали старые и сажали новые деревья. Руководители проекта заявляют, что за два года средний прирост количества деревьев составляет $15\%$. Экологи говорят, что за два года количество деревьев уменьшилось на $10\%$. Может ли и то и другое быть правдой? (Если количество деревьев за год увеличилось, то прирост считается положительным, если уменьшилось – то отрицательным. Средний прирост за два года руководители вычисляют как $(a+b)/2$, где $a$ – прирост за первый год, $b$ – за второй.)

   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1110]      



Задача 66501

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 7,8

Велосипедист проехал из пункта А в пункт В, где пробыл 30 минут, и вернулся в А. По пути в В он обогнал пешехода, а через 2 часа встретился с ним на обратном пути. Пешеход прибыл в В одновременно с тем, когда велосипедист вернулся в А. Сколько времени потребовалось пешеходу на путь из А в В, если его скорость в четыре раза меньше скорости велосипедиста?
Прислать комментарий     Решение


Задача 66519

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7

Таня сфотографировала четырёх котиков, поедающих сосиски (рис. 1). Вскоре она сделала ещё один кадр (рис. 2). Каждый котик ест свои сосиски непрерывно и с постоянной скоростью, а на чужие не покушается. Кто доест первым и кто последним? Ответ объясните.

Прислать комментарий     Решение


Задача 66576

Темы:   [ Текстовые задачи (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 9,10,11

За круглым вращающимся столом, на котором стоят 8 белых и 7 чёрных чашек, сидят 15 гномов. Они надели 8 белых и 7 чёрных колпачков. Каждый гном берёт себе чашку, цвет которой совпадает с цветом его колпачка, и ставит напротив себя, после этого стол поворачивается случайным образом. Какое наибольшее число совпадений цвета чашки и колпачка можно гарантировать после поворота стола (гномы сами выбирают, как сесть, но не знают, как повернётся стол)?
Прислать комментарий     Решение


Задача 66622

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3
Классы: 8,9,10,11

Автор: Шноль Д.Э.

В парке два года проводили озеленительные работы: спиливали старые и сажали новые деревья. Руководители проекта заявляют, что за два года средний прирост количества деревьев составляет $15\%$. Экологи говорят, что за два года количество деревьев уменьшилось на $10\%$. Может ли и то и другое быть правдой? (Если количество деревьев за год увеличилось, то прирост считается положительным, если уменьшилось – то отрицательным. Средний прирост за два года руководители вычисляют как $(a+b)/2$, где $a$ – прирост за первый год, $b$ – за второй.)
Прислать комментарий     Решение


Задача 66630

Темы:   [ Таблицы и турниры (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.

После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .