Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 1110]
Велосипедист проехал из пункта А в пункт В, где пробыл 30 минут, и вернулся в А. По пути в В он обогнал пешехода, а через 2 часа встретился с ним на обратном пути. Пешеход прибыл в В одновременно с тем, когда велосипедист вернулся в А. Сколько времени потребовалось пешеходу на путь из А в В, если его скорость в четыре раза меньше скорости велосипедиста?
|
|
Сложность: 3 Классы: 5,6,7
|
Таня сфотографировала четырёх котиков, поедающих сосиски (рис. 1). Вскоре она сделала ещё один кадр (рис. 2). Каждый котик ест свои сосиски непрерывно и с постоянной скоростью, а на чужие не покушается. Кто доест первым и кто последним? Ответ объясните.
|
|
Сложность: 3 Классы: 9,10,11
|
За круглым вращающимся столом, на котором стоят 8 белых и
7 чёрных чашек, сидят 15 гномов. Они надели 8 белых и 7 чёрных
колпачков. Каждый гном берёт себе чашку, цвет которой совпадает с
цветом его колпачка, и ставит напротив себя, после этого стол
поворачивается случайным образом. Какое наибольшее число совпадений
цвета чашки и колпачка можно гарантировать после поворота стола (гномы
сами выбирают, как сесть, но не знают, как повернётся стол)?
|
|
Сложность: 3 Классы: 8,9,10,11
|
В парке два года проводили озеленительные работы: спиливали старые и сажали новые деревья. Руководители проекта заявляют, что за два года средний прирост количества деревьев составляет $15\%$. Экологи говорят, что за два года количество деревьев уменьшилось на $10\%$. Может ли и то и другое быть правдой?
(Если количество деревьев за год увеличилось, то прирост считается положительным, если уменьшилось – то отрицательным. Средний прирост за два года руководители вычисляют как $(a+b)/2$, где $a$ – прирост за первый год, $b$ – за второй.)
|
|
Сложность: 3 Классы: 8,9,10,11
|
В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.
После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 1110]