ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя и Вася играют в такую игру. Каждым ходом Петя называет какое-то целое число, а Вася записывает на доску либо названное число, либо сумму этого числа и всех ранее написанных чисел. Всегда ли Петя сможет добиться того, чтобы в какой-то момент на доске среди написанных чисел было
а) хотя бы сто чисел 5;
б) хотя бы сто чисел 10?

   Решение

Задачи

Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 1308]      



Задача 66877

Тема:   [ Теория игр (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Петя и Вася играют в такую игру. Каждым ходом Петя называет какое-то целое число, а Вася записывает на доску либо названное число, либо сумму этого числа и всех ранее написанных чисел. Всегда ли Петя сможет добиться того, чтобы в какой-то момент на доске среди написанных чисел было
а) хотя бы сто чисел 5;
б) хотя бы сто чисел 10?
Прислать комментарий     Решение


Задача 66887

Темы:   [ Теория игр (прочее) ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Петя и Вася по очереди пишут на доску дроби вида $1/n$, где $n$ — натуральное, начинает Петя. Петя за ход пишет только одну дробь, а Вася за первый ход — одну, за второй ход — две, и так каждым следующим ходом на одну дробь больше. Вася хочет, чтобы после какого-то хода сумма всех дробей на доске была натуральным числом. Сможет ли Петя помешать ему?
Прислать комментарий     Решение


Задача 67155

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Шахматные доски и шахматные фигуры ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Теорема Пика ]
Сложность: 5
Классы: 8,9,10,11

Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1.
Прислать комментарий     Решение


Задача 67192

Темы:   [ Теория алгоритмов (прочее) ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 5
Классы: 9,10,11

На экране суперкомпьютера напечатано число $11\ldots 1$ ($900$ единиц). Каждую секунду суперкомпьютер заменяет его по следующему правилу. Число записывается в виде $\overline{AB}$, где $B$ состоит из двух его последних цифр, и заменяется на $2\cdot A + 8\cdot B$ (если $B$ начинается на нуль, то он при вычислении опускается). Например, $305$ заменяется на $2\cdot 3 + 8 \cdot 5 = 46$. Если на экране остаётся число, меньшее $100$, то процесс останавливается. Правда ли, что он остановится?
Прислать комментарий     Решение


Задача 67258

Темы:   [ Взвешивания ]
[ Раскраски ]
Сложность: 5
Классы: 8,9,10,11

На каждой клетке доски 5×5 лежит по одной монете, все монеты внешне одинаковы. Среди них ровно 2 монеты фальшивые, они одинакового веса и легче настоящих, которые тоже весят одинаково. Фальшивые монеты лежат в клетках, имеющих ровно одну общую вершину. Можно ли за одно взвешивание на чашечных весах без гирь гарантированно найти а) 13 настоящих монет; б) 15 настоящих монет; в) 17 настоящих монет?
Прислать комментарий     Решение


Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .