ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В турнире по теннису (где не бывает ничьих) участвовало более 4 спортсменов. Каждый игровой день каждый теннисист принимал участие ровно в одной игре. К завершению турнира каждый сыграл с каждым в точности один раз. Назовём игрока упорным, если он выиграл хотя бы один матч и после первой своей победы ни разу не проигрывал. Остальных игроков назовём неупорными. Верно ли, что игровых дней, когда была встреча между неупорными игроками, больше половины? Решение |
Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 1110]
Перед вами часы. Сколько существует положений стрелок, по которым нельзя определить время, если не знать, какая стрелка часовая,
а) Прямоугольная таблица из m строк и n столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это.
В таблице размерами m×n расставлены числа – в каждой клетке по числу. В каждом столбце подчеркнуто k наибольших чисел (k ≤ m), в каждой строке – l наибольших чисел (l ≤ n). Докажите, что по крайней мере kl чисел подчёркнуты дважды.
В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.
Страница: << 129 130 131 132 133 134 135 >> [Всего задач: 1110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|