ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть X – некоторое множество целых чисел, которое можно разбить на N непересекающихся возрастающих арифметических прогрессий (бесконечных в обе стороны), а меньше чем на N – нельзя. Для любого ли такого X такое разбиение на N прогрессий единственно, если а) N = 2; б) N = 3?

(Возрастающая арифметическая прогрессия – это последовательность, в которой каждое число больше своего соседа слева на одну и ту же положительную величину.)

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 192]      



Задача 67269

Темы:   [ Арифметическая прогрессия ]
[ Арифметика остатков (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Пусть X – некоторое множество целых чисел, которое можно разбить на N непересекающихся возрастающих арифметических прогрессий (бесконечных в обе стороны), а меньше чем на N – нельзя. Для любого ли такого X такое разбиение на N прогрессий единственно, если а) N = 2; б) N = 3?

(Возрастающая арифметическая прогрессия – это последовательность, в которой каждое число больше своего соседа слева на одну и ту же положительную величину.)
Прислать комментарий     Решение


Задача 32796

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Арифметическая прогрессия ]
Сложность: 2
Классы: 7,8

Когда мальчик Клайв подошел к дедушкиным настенным часам с кукушкой, на них было 12 часов 5 минут. Клайв стал крутить пальцем минутную стрелку, пока часовая не вернулась на прежнее место. Сколько "ку-ку" насчитал за это время дедушка в соседней комнате?
Прислать комментарий     Решение


Задача 116226

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
Сложность: 2
Классы: 10,11

Последовательность из двух различных чисел продолжили двумя способами: так, чтобы получилась геометрическая прогрессия, и так, чтобы получилась арифметическая прогрессия. При этом третий член геометрической прогрессии совпал с десятым членом арифметической прогрессии. А с каким членом арифметической прогрессии совпал четвёртый член геометрической прогрессии?

Прислать комментарий     Решение

Задача 30382

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 8,9

Три простых числа p, q и r, большие 3, образуют арифметическую прогрессию:  q = p + d,  r = p + 2d.  Докажите, что d делится на 6.

Прислать комментарий     Решение

Задача 30744

Темы:   [ Правило произведения ]
[ Геометрическая прогрессия ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 6,7,8

Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр?

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 192]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .