Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 195]
|
|
|
Сложность: 3 Классы: 7,8,9
|
Дорога протяженностью 1 км полностью освещена фонарями, причем каждый
фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее
количество фонарей может быть на дороге, если известно, что
после
выключения любого фонаря дорога будет освещена уже не полностью?
|
|
|
Сложность: 3 Классы: 7,8,9
|
а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег?
б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)
Может ли сумма 1 + 2 + 3 + ... + (n – 1) + n при каком-нибудь натуральном n оканчиваться цифрой 7?
|
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что в любом многоугольнике найдутся две стороны,
отношение которых заключено между числами 1/2 и 2.
Существуют ли а) 5, б) 6 простых чисел, образующих арифметическую прогрессию?
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 195]