ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Маресин В.

Для каждого натурального  n > 1  существует такое число cn, что для любого x произведение синуса числа x, синуса числа  x + π/n,  синуса числа
x + /n,  ..., наконец, синуса числа  x + (n – 1)π/n  равно произведению числа cn на синус числа nx. Докажите это и найдите величину cn.

   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 17]      



Задача 61098

Темы:   [ Теорема Безу. Разложение на множители ]
[ Комплексные числа помогают решить задачу ]
[ Тригонометрическая форма. Формула Муавра ]
Сложность: 4
Классы: 10,11

Докажите тождества

а)  

б)  

в)  

г)  

Прислать комментарий     Решение

Задача 73670

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Многочлен n-й степени имеет не более n корней ]
[ Тригонометрическая форма. Формула Муавра ]
Сложность: 5-
Классы: 10,11

Автор: Маресин В.

Для каждого натурального  n > 1  существует такое число cn, что для любого x произведение синуса числа x, синуса числа  x + π/n,  синуса числа
x + /n,  ..., наконец, синуса числа  x + (n – 1)π/n  равно произведению числа cn на синус числа nx. Докажите это и найдите величину cn.

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .