ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Составьте из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 магический квадрат, то есть разместите их в таблице так, чтобы суммы чисел по строкам, столбцам и двум диагоналям были одинаковы. Решение Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа n, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на n. Решение |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 188]
Натуральные числа m и n таковы, что m > n,
m не делится на n и имеет от деления на n тот же остаток,
что и m + n от деления на m – n.
Найдите такое наименьшее чётное натуральное число a, что a + 1 делится на 3, a + 2 – на 5, a + 3 – на 7, a + 4 – на 11, a + 5 – на 13.
У продавца и покупателя в сумме 1999 рублей монетами и купюрами в 1, 5, 10, 50, 100, 500 и 1000 рублей. Кот в мешке стоит целое число рублей, причём денег у покупателя достаточно. Докажите, что покупатель сможет купить кота, получив причитающуюся сдачу.
Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа n, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на n.
Докажите, что
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 188] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|