Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 332]
|
|
|
Сложность: 4 Классы: 7,8,9
|
В таблице размерами m×n расставлены числа – в каждой клетке по числу. В каждом столбце подчеркнуто k наибольших чисел (k ≤ m), в каждой строке – l наибольших чисел (l ≤ n). Докажите, что по крайней мере kl чисел подчёркнуты дважды.
|
|
|
Сложность: 4 Классы: 10,11
|
Дан произвольный набор из +1 и -1 длиной 2
k. Из него получается новый по
следующему правилу: каждое число умножается на следующее за ним; последнее
2
k-тое число умножается на первое. С новым набором из 1 и -1
проделывается то же самое и т.д.
Доказать, что в конце концов получается набор, состоящий из одних единиц.
|
|
|
Сложность: 4 Классы: 9,10,11
|
Дана последовательность целых положительных чисел
X1,
X2...
Xn, все
элементы которой не превосходят некоторого числа
M. Известно, что при всех
k > 2
Xk = |
Xk - 1 -
Xk - 2|. Какой может быть максимальная длина этой
последовательности?
В клетках таблицы размером 10×20 расставлено 200 различных чисел. В
каждой строчке отмечены три наибольших числа красным цветом, а в каждом столбце
отмечены три наибольших числа синим цветом. Доказать, что не менее девяти чисел
отмечены в таблице как красным, так и синим цветом.
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Доказать, что 4m − 4n делится на 3k+1 тогда и только тогда, когда m − n делится на 3k.
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 332]