ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 199]      



Задача 88278

Темы:   [ Обыкновенные дроби ]
[ Арифметика. Устный счет и т.п. ]
[ Инварианты ]
Сложность: 2
Классы: 5,6,7

Какое число нужно вычесть из числителя дроби 537/463 и прибавить к знаменателю, чтобы после сокращения получить 1/9?

Прислать комментарий     Решение

Задача 78726

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 2+
Классы: 7,8

На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?

Прислать комментарий     Решение

Задача 88002

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 2+
Классы: 6,7,8

Незнайка взял у Пилюлькина книжку и сосчитал, сколько понадобилось цифр, чтобы пронумеровать все страницы, начиная с первой. У него получилось 100 цифр. Могло ли так быть, или Незнайка ошибся? Если могло, скажите, сколько было страниц.

Прислать комментарий     Решение

Задача 88019

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Инварианты ]
Сложность: 2+
Классы: 5,6,7,8

На шахматной доске 5×5 клеток расставили 25 шашек – по одной на каждой клетке. Потом все шашки сняли с доски, но запомнили, на какой клетке стояла каждая. Можно ли ещё раз расставить шашки на доске таким образом, чтобы каждая шашка стояла на клетке, соседней с той, на которой она стояла в прошлый раз (соседняя по горизонтали или вертикали, но не наискосок)?

Прислать комментарий     Решение

Задача 98378

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .