|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В Швамбрании N городов, каждые два соединены дорогой. При этом дороги
сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над
другой). Злой волшебник устанавливает на всех дорогах одностороннее движение
таким образом, что если из города можно выехать, то в него нельзя вернуться.
Доказать, что
Дан куб с ребром 1. Докажите, что сумма расстояний от произвольной точки до его вершин не меньше 4 Решить в целых числах уравнение 2n + 7 = x². Набор чисел a0, a1, ..., an удовлетворяет условиям: a0 = 0, 0 ≤ ak+1 – ak ≤ 1 при k = 0, 1, ..., n – 1. Докажите неравенство Целые ненулевые числа a1, a2, ..., an таковы, что равенство a) Докажите, что число n чётно. б) При каком наименьшем n такие числа существуют? Докажите, что если все грани тетраэдра равны между собой, то противоположные рёбра тетраэдра попарно равны. а) Укажите два прямоугольных треугольника, из которых можно сложить треугольник, длины сторон и площадь которого — целые числа. б) Докажите, что если площадь треугольника — целое число, а длины сторон — последовательные натуральные числа, то этот треугольник можно сложить из двух прямоугольных треугольников с целочисленными сторонами. Основание пирамиды ABCD – треугольник ABC со сторонами AC = 6 , BC = 8 , AB = 10 . Все боковые рёбра равны 5 |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44]
В пространстве даны три отрезка A1A2, B1B2 и C1C2, не лежащие в одной плоскости и пересекающиеся в одной точке P. Обозначим через Oijk центр сферы, проходящей через точки Ai, Bj, Ck и P. Докажите, что прямые O111O222, O112O221, O121O212 и O211O122 пересекаются в одной точке.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|