ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство

   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 200]      



Задача 98245

Темы:   [ Неравенство Коши ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство

Прислать комментарий     Решение

Задача 110180

Темы:   [ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Храбров А.

Докажите, что     для  x > 0  и натурального n.

Прислать комментарий     Решение

Задача 115995

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Докажите, что если  x > 0,  y > 0,  z > 0 и  x² + y² + z² = 1,  то  ,  и укажите, в каком случае достигается равенство.

Прислать комментарий     Решение

Задача 30881

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10

Докажите неравенство Коши для пяти чисел, то есть докажите, что при   a, b, c , d e ≥ 0 имеет место неравенство

Прислать комментарий     Решение

Задача 60310

Тема:   [ Неравенство Коши ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство   ,   где x1, ..., xn – положительные числа.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .