ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что для любого числа p > 2 найдется такое число $ \beta$, что

$\displaystyle \underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+
\sqrt{2+p}}}}}_{n~\mbox{\scriptsize {радикалов}}}^{}\,$ = $\displaystyle \beta^{2^n}_{}$ - $\displaystyle \beta^{-2^n}_{}$.


Вниз   Решение


Автор: Фольклор

На плоскости нарисован чёрный квадрат. Имеется семь квадратных плиток того же размера. Нужно положить их на плоскость так, чтобы они не перекрывались и чтобы каждая плитка покрывала хотя бы часть чёрного квадрата (хотя бы одну точку внутри него). Как это сделать?

ВверхВниз   Решение


Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?

ВверхВниз   Решение


На доске n×n расставлено  n – 1  фишек так, что никакие две из них не стоят на соседних (по стороне) клетках.
Докажите, что одну из них можно передвинуть на соседнюю клетку так, чтобы снова никакие две фишки не стояли на соседних клетках.

ВверхВниз   Решение


На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.

ВверхВниз   Решение


Может ли быть так, что   а)  σ(n) > 3n;   б)  σ(n) > 100n?

ВверхВниз   Решение


Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 18 плашек и сложить из них квадрат 6×6 так, чтобы концы диагоналей нигде не совпали?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 121]      



Задача 88042

Темы:   [ Замощения костями домино и плитками ]
[ Четность и нечетность ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3+
Классы: 5,6,7,8

Все поля шахматной доски 8×8 покрыли 32 косточками домино (каждая косточка закрывает в точности два поля).
Докажите, что число вертикально лежащих косточек чётно.

Прислать комментарий     Решение

Задача 98232

Темы:   [ Замощения костями домино и плитками ]
[ Правило произведения ]
Сложность: 3+
Классы: 8,9,10

На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий?

Прислать комментарий     Решение

Задача 98448

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 18 плашек и сложить из них квадрат 6×6 так, чтобы концы диагоналей нигде не совпали?

Прислать комментарий     Решение

Задача 98453

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 32 плашки и сложить из них квадрат 8×8 так, чтобы концы диагоналей нигде не совпали?

Прислать комментарий     Решение

Задача 103017

Тема:   [ Замощения костями домино и плитками ]
Сложность: 3+
Классы: 5,6,7

Комплект косточек домино выложен в виде прямоугольника 8×7 клеток. Попробуйте определить, как расположены косточки?

домино

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .