|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике ABC сторона BC равна полусумме двух других сторон. Доказать, что биссектриса угла A перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника. Какое наибольшее количество треугольных граней может иметь пятигранник? В коллекции Алика есть два типа предметов: значки и браслеты. Значков больше, чем браслетов. Алик заметил, что если он увеличит количество браслетов в некоторое (не обязательно целое) число раз, не изменив количества значков, то в его коллекции будет 100 предметов. А если, наоборот, он увеличит в это же число раз первоначальное количество значков, оставив прежним количество браслетов, то у него будет 101 предмет. Сколько значков и сколько браслетов могло быть в коллекции Алика? Докажите, что существует бесконечно много нечётных n, для которых число 2n + n – составное. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 267]
Корни уравнения x² + ax + 1 = b – целые, отличные от нуля числа. Докажите, что число a² + b² является составным.
Докажите, что существует бесконечно много нечётных n, для которых число 2n + n – составное.
Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.
Докажите, что при нечетном m выражение (x + y + z)m – xm – ym – zm делится на (x + y + z)3 – x3 – y3 – z3.
Докажите, что многочлен x44 + x33 + x22 + x11 + 1 делится на x4 + x3 + x2 + x + 1.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 267] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|