ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 158]      



Задача 98498

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9

Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)

Прислать комментарий     Решение

Задача 98541

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 9,10,11

На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?

Прислать комментарий     Решение

Задача 98567

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 8,9

На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать?

Прислать комментарий     Решение

Задача 102881

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9

Докажите, что число способов расставить на шахматной доске максимальное число ферзей чётно.

Прислать комментарий     Решение

Задача 107801

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

В углу шахматной доски размером n×n полей стоит ладья. При каких n, чередуя горизонтальные и вертикальные ходы, она может за n² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .