|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В основании четырёхугольной пирамиды SABCD лежит ромб ABCD с тупым углом при вершине A . Высота ромба равна 2, точка пересечения его диагоналей является ортогональной проекцией вершины S на плоскость основания. Сфера радиуса 1 касается плоскостей всех граней пирамиды. Найдите объём пирамиды, если расстояние от центра сферы до прямой BD равно Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F. Постройте точки X и Y на сторонах AB и BC треугольника ABC так, что AX = BY и XY| AC. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 161]
В левом нижнем углу клетчатой доски n×n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите n.
На шахматной доске стоят восемь не бьющих друг друга ладей. Докажите, что можно каждую из них передвинуть ходом коня так, что они по-прежнему не будут бить друг друга. (Все восемь ладей передвигаются "одновременно", то есть если, например, две ладьи бьют друг друга ходом коня, то их можно поменять местами.)
Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее.
Какое наименьшее число клеток надо отметить на доске 15×15 так, чтобы слон с любой клетки доски бил не менее двух отмеченных клеток? (Слон бьёт и ту клетку, где стоит.)
Какое наибольшее число коней можно расставить на шахматной доске так, чтобы каждый бил не более семи из остальных?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 161] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|