ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Есть 128 монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса не более чем за семь взвешиваний?
б) Есть восемь монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса за два взвешивания?

   Решение

Задачи

Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 1308]      



Задача 98494

Темы:   [ Взвешивания ]
[ Двоичная система счисления ]
Сложность: 4-
Классы: 8,9,10,11

а) Даны 32 одинаковые по виду монеты. Известно, что среди них есть ровно две фальшивые, которые отличаются от остальных по весу (настоящие монеты равны по весу, и фальшивые монеты также равны по весу). Как разделить все монеты на две равные по весу кучки, сделав не более четырёх взвешиваний на чашечных весах без гирь?

б) Та же задача для 22 монет.

Прислать комментарий     Решение

Задача 98499

Темы:   [ Взвешивания ]
[ Двоичная система счисления ]
[ Деление с остатком ]
Сложность: 4-
Классы: 8,9

Автор: Калинин А.

На правой чаше чашечных весов лежит груз массой 11111 г. Весовщик последовательно раскладывает по чашам гири, первая из которых имеет массу 1 г, а каждая последующая вдвое тяжелее предыдущей. В какой-то момент весы оказались в равновесии. На какую чашу поставлена гиря 16 г?

Прислать комментарий     Решение

Задача 98560

Темы:   [ Взвешивания ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9

а) Есть 128 монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса не более чем за семь взвешиваний?
б) Есть восемь монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса за два взвешивания?

Прислать комментарий     Решение

Задача 98563

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4-
Классы: 9,10,11

Есть шесть кусков сыра разного веса. Известно, что можно разложить сыр на две кучки по три куска так, чтобы кучки весили поровну.
Как можно сделать это за два взвешивания на чашечных весах без гирь, если про любые два куска на глаз видно, какой весит больше?

Прислать комментарий     Решение

Задача 102798

Темы:   [ Симметричная стратегия ]
[ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 7,8,9

Двое пишут 2k-значное число, используя цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй. Третью снова первый и т.д. Может ли первый добиться того, чтобы полученное число делилось на 9, если второй хочет этому помешать? Рассмотреть случаи:   а)  k = 10;   б)  k = 15.

Прислать комментарий     Решение

Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .