ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решить две предыдущие задачи, заменив лексикографический порядок на обратный (раньше идут те, которые больше в лексикографическом порядке).

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 98827

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3

Пусть мы решили представлять k-элементные подмножества множества {1..n} убывающими последовательностями длины k, упорядоченными по-прежнему лексикографически. (Пример: 21 31 32 41 42 43 51 52 53 54.) Как выглядит тогда алгоритм перехода к следующей?
Прислать комментарий     Решение


Задача 98828

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3

Решить две предыдущие задачи, заменив лексикографический порядок на обратный (раньше идут те, которые больше в лексикографическом порядке).
Прислать комментарий     Решение


Задача 98829

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3+

Перечислить все вложения (функции, переводящие разные элементы в разные) множества {1..k} в {1..n} (предполагается, что k$ \le$n). Порождение очередного элемента должно требовать не более C . k действий.
Прислать комментарий     Решение


Задача 98830

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3+

Перечислить все разбиения целого положительного числа n на целые положительные слагаемые (разбиения, отличающиеся лишь порядком слагаемых, считаются за одно). (Пример: n=4, разбиения 1+1+1+1, 2+1+1, 2+2, 3+14.)
Прислать комментарий     Решение


Задача 98831

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3+

Представляя по-прежнему разбиения как невозрастающие последовательности, перечислить их в порядке, обратном лексикографическому (для n=4, например, должно быть 4, 3+1, 2+2, 2+1+1, 1+1+1+1).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .