Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 598]
Найти четырёхзначное число, которое при делении на 131 даёт в остатке 112, а
при делении на 132 даёт в остатке 98.
Определить четырёхзначное число, если деление этого числа на однозначное
производится по следующей схеме:
|
× |
× |
× |
× |
| × |
|
|
× |
× |
|
|
| ××× |
|
|
|
|
× |
× |
| |
|
|
|
|
× |
× |
| |
|
|
|
|
|
|
| |
|
а деление этого же числа на другое однозначное производится по такой схеме:
|
× |
× |
× |
× |
| × |
|
|
|
× |
|
|
| ××× |
|
|
|
× |
× |
|
| |
|
|
|
|
× |
|
| |
|
|
|
|
× |
× |
| |
|
|
|
|
× |
× |
| |
|
|
|
|
|
|
| |
|
Сумму цифр числа a обозначим через S(a). Доказать, что если S(a) = S(2a), то число a делится на 9.
|
|
Сложность: 3 Классы: 7,8,9
|
Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.
|
|
Сложность: 3 Классы: 7,8,9
|
Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы
одно, которое делится на сумму своих цифр.
Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 598]