Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 601]
|
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли выбрать 100 000 номеров телефонов из 6 цифр каждый так, чтобы
при одновременном вычеркивании из всех этих номеров
k-той цифры
(
k = 1, 2,...6) получились все пятизначные номера от 00000 до 99999?
С числом
123456789101112...9989991000 производится следующая операция:
зачёркиваются две соседние цифры
a и
b (
a стоит перед
b) и на их место
вставляется число
a + 2
b (можно в качестве
a взять нуль, ``стоящий'' перед
числом, а в качестве
b — первую цифру числа). С полученным числом
производится такая же операция и т.д. (Например, из числа 118 307 можно
на первом шаге получить числа 218 307, 38 307, 117 307,
111 407, 11 837, 118 314.) Доказать, что таким способом можно
получить число 1.
|
|
|
Сложность: 3+ Классы: 7,8,9
|
а) На столе лежат 111 спичек. Маша и Даша по очереди берут со стола по несколько спичек, но не больше десяти за один раз. Выигрывает тот, кто возьмет последнюю спичку. Кто победит при правильной игре?
б) На полу лежат три кучки - из 3, 4 и 5 спичек. Теперь Маша и Даша за один раз могут взять любое количество спичек, но только из одной кучки. Кто выиграет на этот раз?
|
|
|
Сложность: 4- Классы: 9,10,11
|
Рассмотрим все натуральные числа,
в десятичной записи которых отсутствует ноль.
Докажите, что сумма обратных величин любого количества из
этих чисел не превосходит некоторого числа C.
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Придумайте какое-либо взаимно-однозначное соответствие между разбиениями натурального числа на различные и на нечётные слагаемые.
Страница:
<< 90 91 92 93
94 95 96 >> [Всего задач: 601]