ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 601]      



Задача 77868

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Десятичная система счисления ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 8,9

Сколько цифр имеет число 2100?

Прислать комментарий     Решение

Задача 78581

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 9,10,11

Докажите, что последние цифры чисел nn (n – натуральное) образуют периодическую последовательность.

Прислать комментарий     Решение

Задача 98290

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10

Существует ли возрастающая арифметическая прогрессия
  а) из 11,
  б) из 10000,
  в) из бесконечного числа натуральных чисел,
такая что последовательность сумм цифр её членов – также возрастающая арифметическая прогрессия?

Прислать комментарий     Решение

Задача 98490

Темы:   [ Взвешивания ]
[ Двоичная система счисления ]
Сложность: 4-
Классы: 8,9,10

Даны 32 одинаковые по виду монеты. Известно, что среди них есть ровно две фальшивые, которые отличаются от остальных по весу (настоящие монеты равны по весу, и фальшивые монеты также равны по весу). Как разделить все монеты на две равные по весу кучки, сделав не более четырёх взвешиваний на чашечных весах без гирь?

Прислать комментарий     Решение

Задача 98494

Темы:   [ Взвешивания ]
[ Двоичная система счисления ]
Сложность: 4-
Классы: 8,9,10,11

а) Даны 32 одинаковые по виду монеты. Известно, что среди них есть ровно две фальшивые, которые отличаются от остальных по весу (настоящие монеты равны по весу, и фальшивые монеты также равны по весу). Как разделить все монеты на две равные по весу кучки, сделав не более четырёх взвешиваний на чашечных весах без гирь?

б) Та же задача для 22 монет.

Прислать комментарий     Решение

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .