ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 601]      



Задача 32012

Темы:   [ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9

В колоде 16 карт, пронумерованных сверху вниз. Разрешается снять часть колоды сверху, после чего снятую и оставшуюся части колоды, не переворачивая "врезать" друг в друга. Может ли случиться, что после нескольких таких операций карты окажутся пронумерованными снизу вверх? Если да, то за какое наименьшее число операций это может произойти?

Прислать комментарий     Решение

Задача 35103

Темы:   [ Теория алгоритмов (прочее) ]
[ Системы счисления (прочее) ]
Сложность: 4
Классы: 9,10,11

Один человек задумал 10 натуральных чисел - x1, x2, ... , x10. Другой отгадывает их. Разрешается задавать вопросы вида: "чему равна сумма a1x1+a2x2+...+a10x10?", где a1, a2, ... , a10 - некоторые натуральные числа. Как за 2 вопроса узнать все загаданные числа?
Прислать комментарий     Решение


Задача 60912

Темы:   [ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

Ханойская башня и двоичная система счисления. Рассмотрим два процесса, каждый из которых состоит из 28 - 1 шагов. Первый — это процесс решения головоломки ``Ханойская башня'' (смотри задачу 1.42) при помощи оптимального алгоритма. Второй — это процесс прибавления единицы, который начинается с 0 и заканчивается числом 28 - 1. Опишите связь между этими двумя процессами.

Прислать комментарий     Решение

Задача 60913

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Двоичная система счисления ]
Сложность: 4
Классы: 8,9,10,11

Задача Иосифа Флавия. n человек выстраиваются по кругу и нумеруются числами от 1 до n. Затем из них исключается каждый второй до тех пор, пока не останется только один человек. Например, если n = 10, то порядок исключения таков: 2, 4, 6, 8, 10, 3, 7, 1, 9, так что остается номер 5. Для данного n будем обозначать через J(n) номер последнего оставшегося человека. Докажите, что
а) J(2n) = 2J(n) - 1;
б) J(2n + 1) = 2J(n) + 1;
в) если n = (1bm - 1bm - 2...b1b0)2, то J(n) = (bm - 1bm - 2...b1b01)2.

Прислать комментарий     Решение

Задача 66337

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Десятичная система счисления ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Петров Ф.

Цифры натурального числа  $n$ > 1  записали в обратном порядке и результат умножили на $n$. Могло ли получиться число, записываемое только единицами?

Прислать комментарий     Решение

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .