Страница:
<< 87 88 89 90
91 92 93 >> [Всего задач: 601]
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что
найдётся такой член прогрессии, в записи которого участвует цифра 9.
Рассмотрим суммы цифр всех чисел от 1 до 1000000 включительно. У полученных чисел вновь рассмотрим сумму цифр и так далее, пока не получим миллион однозначных чисел. Каких чисел больше среди них – единиц или двоек?
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Найдите все простые числа вида PP + 1 (P – натуральное), содержащие не более 19 цифр.
Найти все такие двузначные числа , что при умножении на некоторое целое число
получается число, предпоследняя цифра которого – 5.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
a1, a2, a3, ..., an, ... – возрастающая последовательность натуральных чисел. Известно, что an+1 ≤ 10an при всех натуральных n.
Доказать, что бесконечная десятичная дробь 0,a1a2a3..., полученная приписыванием этих чисел друг к другу, непериодическая.
Страница:
<< 87 88 89 90
91 92 93 >> [Всего задач: 601]