ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 171]      



Задача 97906

Темы:   [ Объединение, пересечение и разность множеств ]
[ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 8,9,10

Автор: Фольклор

30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
  а) четырёх вечеров недостаточно,
  б) пяти вечеров также недостаточно,
  в) а десяти вечеров достаточно,
  г) и даже семи вечеров тоже достаточно.

Прислать комментарий     Решение

Задача 111868

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
Сложность: 5
Классы: 9,10,11

В блицтурнире принимали участие  2n + 3  шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее n игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.

Прислать комментарий     Решение

Задача 78595

Темы:   [ Взвешивания ]
[ Сочетания и размещения ]
[ Классическая комбинаторика (прочее) ]
[ Теория алгоритмов ]
Сложность: 5+
Классы: 8,9,10,11

а) Из 19 шаров 2 радиоактивны. Про любую кучку шаров за одну проверку можно узнать, имеется ли в ней хотя бы один радиоактивный шар (но нельзя узнать, сколько их). Доказать, что за 8 проверок всегда можно выделить оба радиоактивных шара.

б) Из 11 шаров два радиоактивны. Доказать, что менее чем за 7 проверок нельзя гарантировать нахождение обоих радиоактивных шаров,
а за 7 проверок их всегда можно обнаружить.

Прислать комментарий     Решение

Задача 116695

Темы:   [ Теория графов (прочее) ]
[ Сочетания и размещения ]
[ Принцип Дирихле ]
[ Объединение, пересечение и разность множеств ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 5+
Классы: 10

Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества  {1, 2, 3, ..., 2k},  а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.

Прислать комментарий     Решение

Задача 35628

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 9,10

Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .