Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 171]
|
|
Сложность: 5 Классы: 8,9,10
|
30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,
а) четырёх вечеров недостаточно,
б) пяти вечеров также недостаточно,
в) а десяти вечеров достаточно,
г) и даже семи вечеров тоже достаточно.
|
|
Сложность: 5 Классы: 9,10,11
|
В блицтурнире принимали участие 2n + 3 шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее n игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.
|
|
Сложность: 5+ Классы: 8,9,10,11
|
а) Из 19 шаров 2 радиоактивны. Про любую кучку шаров за одну проверку можно
узнать, имеется ли в ней хотя бы один радиоактивный шар (но нельзя узнать,
сколько их). Доказать, что за 8 проверок всегда можно выделить оба
радиоактивных шара.
б) Из 11 шаров два радиоактивны. Доказать, что менее чем за 7 проверок нельзя гарантировать нахождение обоих радиоактивных шаров,
а за 7 проверок их всегда можно обнаружить.
Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества {1, 2, 3, ..., 2k},
а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.
|
|
Сложность: 2+ Классы: 9,10
|
Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 171]