ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 171]      



Задача 34943

Тема:   [ Сочетания и размещения ]
Сложность: 3-

План города имеет схему, представляющую собой прямоугольник 5×10 клеток. На улицах введено одностороннее движение: разрешается ехать только вправо и вверх. Сколько есть различных маршрутов, ведущих из левого нижнего угла в правый верхний?

Прислать комментарий     Решение

Задача 34981

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков ]
Сложность: 3-
Классы: 8,9

Известно, что в выпуклом n-угольнике  (n > 3)  никакие три диагонали не проходят через одну точку.
Найдите число точек (отличных от вершины) пересечения пар диагоналей.

Прислать комментарий     Решение

Задача 60383

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 3-
Классы: 8,9

На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

Прислать комментарий     Решение

Задача 60397

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 3-
Классы: 8,9,10

Параллелограмм пересекается двумя рядами прямых, параллельных его сторонам; каждый ряд состоит из m прямых.
Сколько параллелограммов можно выделить в образовавшейся сетке?

Прислать комментарий     Решение

Задача 60403

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
Сложность: 3-
Классы: 9,10


Имеется m белых и n чёрных шаров, причём  m > n.
Сколькими способами можно все шары разложить в ряд так, чтобы никакие два чёрных шара не лежали рядом?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .