ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 375]      



Задача 108883

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Внутри выпуклого четырёхугольника ABCD выбрана точка O , не лежащая на диагонали BD , причём ODC = CAB и OBC = CAD . Докажите, что ACB = OCD .
Прислать комментарий     Решение


Задача 108895

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD  ∠B = ∠D,  а центр описанной окружности треугольника ABC, ортоцентр треугольника ADC и вершина B лежат на одной прямой. Докажите, что ABCD – параллелограмм.

Прислать комментарий     Решение

Задача 108907

Темы:   [ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9

Пусть BM – медиана остроугольного треугольника ABC. Касательная в точке A к описанной окружности треугольника ABM, и касательная в точке C к описанной окружности треугольника BCM, пересекаются в точке D. Докажите, что точка K, симметричная точке D относительно прямой AC лежит на прямой BM.

Прислать комментарий     Решение

Задача 108951

Темы:   [ Углы между биссектрисами ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 8,9

AA1 и CC1 – высоты остроугольного треугольника ABC . Прямая, проходящая через центры вписанных окружностей треугольников AA1C и CC1A пересекает стороны AB и BC треугольника ABC в точках X и Y . Докажите, что BX=BY .
Прислать комментарий     Решение


Задача 115650

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9

Прямые, касающиеся окружности Ω в точках A и B, пересекаются в точке O. Точка I – центр Ω. На меньшей дуге AB окружности Ω выбрана точка C, отличная от середины дуги. Прямые AC и OB пересекаются в точке D, а прямые BC и OA – в точке E. Докажите, что центры описанных окружностей треугольников ACE, BCD и OCI лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .