Страница:
<< 1 2
3 >> [Всего задач: 14]
|
|
Сложность: 3 Классы: 7,8,9
|
Вы имеете право сделать 4 гири любого веса.
Какие это должны быть гири, чтобы на весах из предыдущей задачи
можно было взвесить грузы от 1 до 40 кг?
|
|
Сложность: 3 Классы: 6,7,8,9
|
а) У одного человека был подвал, освещавшийся
тремя электрическими лампочками. Выключатели этих лампочек
находились вне подвала, так что включив любой из выключателей,
хозяин должен был спуститься в подвал, чтобы увидеть, какая
именно лампочка зажглась. Однажды он придумал способ, как
определить для каждого выключателя, какую именно лампочку он
включает, сходив в подвал ровно один раз. Какой это способ?
б) Сколько лампочек и выключателей можно идентифицировать друг с
другом, если разрешается 2 раза спуститься в подвал?
|
|
Сложность: 4- Классы: 7,8,9,10,11
|
Карточный фокус. а) Берется колода из
27 карт (без одной масти). Ваш друг загадывает одну из карт.
После чего вы раскладываете все карты в три равные кучки, кладя
каждый раз по одной карте (в первую кучку, затем во вторую, затем
в третью, потом снова в первую и т. д.). Ваш друг указывает на ту
кучку, в которой лежит его карта. Далее вы складываете все три
кучки вместе, вставляя при этом указанную кучку между двумя
другими. Эта процедура повторяется еще два раза. На каком месте в
колоде окажется загаданная карта, после того, как вы сложите
вместе три кучки в третий раз?
б) На каком месте окажется загаданная карта, если с самого начала
было 3
n (
n < 9) карт?
Докажите, что из набора 0, 1, 2, ..., 3k – 1 можно выбрать 2k чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что из набора 0, 1, 2, ..., ½ (3k – 1) можно выбрать 2k чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.
Страница:
<< 1 2
3 >> [Всего задач: 14]