ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите формулу:

arccos x = $\displaystyle \left\{\vphantom{\begin{array}{ll}\arcsin \sqrt{1-x^2},&\mbox{есл...
...arcsin \sqrt{1-x^2},&\mbox{если }-1\leqslant x\leqslant 0.
\end{array}}\right.$$\displaystyle \begin{array}{ll}\arcsin \sqrt{1-x^2},&\mbox{если }0\leqslant
x...
...\  \pi-\arcsin \sqrt{1-x^2},&\mbox{если }-1\leqslant x\leqslant 0.
\end{array}$


Вниз   Решение


  Каждую пятницу десять джентльменов приходят в клуб, и каждый отдает швейцару свою шляпу. Каждая шляпа точно впору своему хозяину, но двух одинаковых по размеру шляп нет. Уходят джентльмены по одному в случайном порядке.
  Провожая очередного джентльмена, швейцар клуба пробует надеть ему на голову первую попавшуюся шляпу. Если налезает, джентльмен уходит в этой шляпе. Если мала, то швейцар пробует следующую случайную шляпу из оставшихся. Если все оставшиеся шляпы оказались малы, швейцар говорит бедняге: "Сэр, сегодня шляпа вам не к лицу", и джентльмен отправляется домой с непокрытой головой. Найдите вероятность того, что в следующую пятницу у швейцара не останется ни одной шляпы.

ВверхВниз   Решение


По кругу выписано несколько чисел. Если для некоторых четырёх идущих подряд чисел a, b, c, d произведение чисел  a – d  и  b – c  отрицательно, то числа b и c можно поменять местами. Докажите, что такие операции можно проделать лишь конечное число раз.

ВверхВниз   Решение


Докажите, что имеют место следующие соотношения:

cos arcsin x = $\displaystyle \sqrt{1-x^2}$;    sin arccos x = $\displaystyle \sqrt{1-x^2}$;
tg arcctg x = $\displaystyle {\dfrac{1}{x}}$;    ctg arctg x = $\displaystyle {\dfrac{1}{x}}$;
cos arctg x = $\displaystyle {\dfrac{1}{\sqrt{1+x^2}}}$;    sin arctg x = $\displaystyle {\dfrac{x}{\sqrt{1+x^2}}}$;
cos arcctg x = $\displaystyle {\dfrac{x}{\sqrt{1+x^2}}}$;    sin arcctg x = $\displaystyle {\dfrac{1}{\sqrt{1+x^2}}}$.


ВверхВниз   Решение


Найдите соотношение между arcsin cos arcsin x и arccos sin arccos x.

ВверхВниз   Решение


Существует ли такое значение x, что выполняется равенство  arcsin2x + arccos2x = 1?

ВверхВниз   Решение


Докажите равенство:

arcsin x + arcsin y = $\displaystyle \eta$arcsin(x$\displaystyle \sqrt{1-y^2}$ + y$\displaystyle \sqrt{1-x^2}$) + $\displaystyle \varepsilon$$\displaystyle \pi$,

где $ \eta$ = 1, $ \varepsilon$ = 0, если xy < 0 или x2 + y2 $ \leqslant$ 1; $ \eta$ = - 1, $ \varepsilon$ = - 1, если x2 + y2 > 1, x < 0, y < 0; $ \eta$ = - 1, $ \varepsilon$ = 1, если x2 + y2 > 1, x > 0, y > 0.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 61231

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 3
Классы: 9,10

Докажите равенство:

4arctg $\displaystyle {\textstyle\frac{1}{5}}$ - arctg $\displaystyle {\textstyle\frac{1}{239}}$ = $\displaystyle {\frac{\pi}{4}}$.


Прислать комментарий     Решение

Задача 61240

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 3
Классы: 9,10

Докажите, что если 0 < x < 1 и

$\displaystyle \alpha$ = 2arctg $\displaystyle {\frac{1+x}{1-x}}$,    $\displaystyle \beta$ = arctg $\displaystyle {\frac{1-x^2}{1+x^2}}$,

то $ \alpha$ + $ \beta$ = $ \pi$.

Прислать комментарий     Решение

Задача 61232

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 3+
Классы: 9,10

Докажите равенство:

arctg $\displaystyle {\textstyle\frac{1}{3}}$ + arctg $\displaystyle {\textstyle\frac{1}{5}}$ + arctg $\displaystyle {\textstyle\frac{1}{7}}$ + arctg $\displaystyle {\textstyle\frac{1}{8}}$ = $\displaystyle {\frac{\pi}{4}}$.


Прислать комментарий     Решение

Задача 61236

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 3+
Классы: 9,10

Докажите, что при x > 1 выполняется равенство:

2arctg x + arcsin$\displaystyle {\frac{2x}{1+x^2}}$ = $\displaystyle \pi$.


Прислать комментарий     Решение

Задача 61237

Темы:   [ Тригонометрические уравнения ]
[ Обратные тригонометрические функции ]
Сложность: 3+
Классы: 9,10

Решите уравнение

arcsin$\displaystyle {\dfrac{x^2-8}{8}}$ = 2 arcsin$\displaystyle {\dfrac{x}{4}}$ - $\displaystyle {\dfrac{\pi}{2}}$.


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .