Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дан треугольник $ABC$. Прямая $AB$ касается его вписанной окружности в точке $C'$, а вневписанной, касающейся стороны $BC$, – в точке $C'_a$. Аналогично определяются точки $C'_b$, $C'_c$, $A'$, $A'_a$, $A'_b$, $A'_c$, $B'$, $B'_a$, $B'_b$, $B'_c$. Рассмотрим длины 12 отрезков – высот треугольников $A'B'C'$, $A'_aB'_aC'_a$, $A'_bB'_bC'_b$, $A'_cB'_cC'_c$.

а) Какое наибольшее число различных может быть среди них?

б) Найдите все возможные количества различных длин.

Вниз   Решение


В однокруговом шахматном турнире назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший.
Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.

ВверхВниз   Решение


Натуральное число a увеличили на 1, а его квадрат увеличился на 1001. Чему равно a?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 73712

Темы:   [ Иррациональные уравнения ]
[ Замена переменных (прочее) ]
[ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Методы решения задач с параметром ]
Сложность: 4+
Классы: 10,11

Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

Прислать комментарий     Решение

Задача 109565

Темы:   [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

Докажите, что если (x+)(y+)=1 , то x+y=0 .
Прислать комментарий     Решение


Задача 108984

Темы:   [ Иррациональные уравнения ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 4+
Классы: 9,10

Найти все действительные решения уравнения

36/+4/=28-4-.

Прислать комментарий     Решение

Задача 77887

Тема:   [ Иррациональные уравнения ]
Сложность: 5-
Классы: 10,11

Найти действительные корни уравнения:

x2 + 2ax + $\displaystyle {\textstyle\frac{1}{16}}$ = - a + $\displaystyle \sqrt{a^2+x-\frac{1}{16}}$    $\displaystyle \left(\vphantom{0<a<\frac{1}{4}}\right.$0 < a < $\displaystyle {\textstyle\frac{1}{4}}$$\displaystyle \left.\vphantom{0<a<\frac{1}{4}}\right)$.

Прислать комментарий     Решение

Задача 79477

Темы:   [ Разложение на множители ]
[ Иррациональные уравнения ]
Сложность: 3+
Классы: 8,9,10

Найти все значения x, y и z, удовлетворяющие равенству $\sqrt{x-y+z} = \sqrt{x} - \sqrt{y} + \sqrt{z}$.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .