Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На плоскости дан многоугольник A1A2...An и точка O внутри его. Докажите, что равенства

$\displaystyle \overrightarrow{OA_1}$ + $\displaystyle \overrightarrow{OA_3}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_2}$,    
 1$\displaystyle \overrightarrow{OA_2}$ + $\displaystyle \overrightarrow{OA_4}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_3}$,    
to4.5cm $\displaystyle \dotfill$    
$\displaystyle \overrightarrow{OA_{n-1}}$ + $\displaystyle \overrightarrow{OA_1}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_n}$.    

необходимы и достаточны для того, чтобы существовало аффинное преобразование, переводящее данный многоугольник в правильный, а точку O — в его центр.

Вниз   Решение


Докажите, что треугольник ABC остроугольный тогда и только тогда, когда длины его проекций на три различных направления равны.

ВверхВниз   Решение



Найдите объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной, равной a, если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o.

ВверхВниз   Решение


Докажите, что из шести ребер тетраэдра можно сложить два треугольника.

ВверхВниз   Решение


а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см?
б) Какое наименьшее число раз придется ломать проволоку, чтобы всё же изготовить требуемый каркас?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 73712

Темы:   [ Иррациональные уравнения ]
[ Замена переменных (прочее) ]
[ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Методы решения задач с параметром ]
Сложность: 4+
Классы: 10,11

Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

Прислать комментарий     Решение

Задача 109565

Темы:   [ Иррациональные уравнения ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

Докажите, что если (x+)(y+)=1 , то x+y=0 .
Прислать комментарий     Решение


Задача 108984

Темы:   [ Иррациональные уравнения ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 4+
Классы: 9,10

Найти все действительные решения уравнения

36/+4/=28-4-.

Прислать комментарий     Решение

Задача 77887

Тема:   [ Иррациональные уравнения ]
Сложность: 5-
Классы: 10,11

Найти действительные корни уравнения:

x2 + 2ax + $\displaystyle {\textstyle\frac{1}{16}}$ = - a + $\displaystyle \sqrt{a^2+x-\frac{1}{16}}$    $\displaystyle \left(\vphantom{0<a<\frac{1}{4}}\right.$0 < a < $\displaystyle {\textstyle\frac{1}{4}}$$\displaystyle \left.\vphantom{0<a<\frac{1}{4}}\right)$.

Прислать комментарий     Решение

Задача 79477

Темы:   [ Разложение на множители ]
[ Иррациональные уравнения ]
Сложность: 3+
Классы: 8,9,10

Найти все значения x, y и z, удовлетворяющие равенству xy+z=xy+z.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .