ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Если a ≡ b (mod m) и c ≡ d (mod m), то ac ≡ bd (mod m). Пусть a и b – два положительных числа, и a < b. Определим две последовательности чисел {an} и {bn} формулами: a0 = a, b0 = b, an+1 = а) Докажите, что обе эти последовательности имеют общий предел. Этот предел называется арифметико-гармоническим средним чисел a и b. б) Докажите, что этот предел совпадает со средним геометрическим чисел a и b. в) Пусть a = 1, b = k. Как последовательность {bn} связана с последовательностью {xn} из задачи 61299? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 52]
Дан многочлен степени $n \geqslant 1$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2.
Даны положительные рациональные числа a, b. Один из корней трёхчлена x² – ax + b – рациональное число, в несократимой записи имеющее вид m/n. Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.
Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен (ax + b)1000 – (cx + d)1000 после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов.
Дан многочлен степени $n > 0$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что у этого многочлена не может быть никаких других коэффициентов, кроме $1$, $-1$ и $-2$.
Пусть 1 + x + x² + ... + xn–1 = F(x)G(x), где F и G – многочлены, коэффициенты которых – нули и единицы (n > 1).
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке