ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 61]      



Задача 78503

Темы:   [ Перестановки и подстановки (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Правило произведения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 4-
Классы: 8,9,10

На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым?

Прислать комментарий     Решение

Задача 64849

Темы:   [ Перестановки и подстановки (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.

Прислать комментарий     Решение

Задача 65080

Темы:   [ Перестановки и подстановки (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Храмцов Д.

На полке в произвольном порядке стоят десять томов энциклопедии, пронумерованных от 1 до 10. Разрешается менять местами любые два тома, между которыми стоит не меньше четырёх других томов. Всегда ли можно расставить все тома по возрастанию номеров?

Прислать комментарий     Решение

Задача 65146

Темы:   [ Перестановки и подстановки (прочее) ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4-
Классы: 6,7

У Пети есть 12 одинаковых разноцветных вагончиков (некоторые, возможно, одного цвета, но неизвестно, сколько вагончиков какого цвета). Петя считает, что различных 12-вагонных поездов он сможет составить больше, чем 11-вагонных. Не ошибается ли Петя? (Поезда считаются одинаковыми, если в них на одних и тех же местах находятся вагончики одного и того же цвета.)

Прислать комментарий     Решение

Задача 66107

Темы:   [ Перестановки и подстановки (прочее) ]
[ Полуинварианты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .