Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 137]
На рисунке изображен параллелограмм и отмечена точка P
пересечения его диагоналей. Проведите через P прямую так, чтобы
она разбила параллелограмм на две части, из которых можно сложить ромб.
12 спичками несложно ограничить квадрат площадью 9 клеточек со стороной в 1 спичку. А как ограничить теми же спичками фигуру с площадью 4 такие же клеточки? Спички нельзя ломать и накладывать одну на другую.
|
|
Сложность: 3- Классы: 7,8,9
|
а) Сколькими способами можно разбить прямоугольник 8×2 на прямоугольники 1×2?
б) Придумайте и опишите фигуру, которую можно разрезать на прямоугольники 1×2 ровно 555 способами.
|
|
Сложность: 3- Классы: 5,6,7,8
|
На клетчатой бумаге нарисован квадрат со стороной
5
клеток.
Его требуется разбить на 5 частей одинаковой площади, проводя отрезки внутри квадрата
только по линиям сетки. Может ли оказаться так, что суммарная длина
проведенных отрезков не превосходит 16 клеток?
|
|
Сложность: 3- Классы: 5,6,7
|
Из каждого клетчатого квадрата со стороной 3 клетки вырезается фигура из пяти клеток с таким же периметром, как у квадрата, но площадью 5 клеток. Саша утверждает, что сможет вырезать семь таких различных фигур (никакие две из них не совместятся при наложении, даже если фигуры переворачивать). Не ошибается ли он?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 137]