Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 407]
|
|
Сложность: 3 Классы: 6,7,8
|
Когда натуральное число имеет нечётное количество делителей?
[Числа Ферма]
|
|
Сложность: 3 Классы: 7,8,9
|
Пусть a и n – натуральные числа, большие 1. Докажите, что если число an + 1 простое, то a чётно и n = 2k.
(Числа вида fk = 22k + 1 называются числами Ферма.)
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что число 11999 + 21999 + ... + 161999 делится на 17.
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что если 6n + 11m делится на 31, то n + 7m также делится на 31.
|
|
Сложность: 3 Классы: 8,9,10
|
Найдите такое n, чтобы число 10n – 1 делилось на а) 7; б) 13; в) 91; г) 819.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 407]