ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 407]      



Задача 60462

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 6,7,8

Когда натуральное число имеет нечётное количество делителей?

Прислать комментарий     Решение

Задача 60478

 [Числа Ферма]
Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Пусть a и n – натуральные числа, большие 1. Докажите, что если число  an + 1  простое, то a чётно и  n = 2k.
(Числа вида  fk = 22k + 1  называются числами Ферма.)

Прислать комментарий     Решение

Задача 60660

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Докажите, что число  11999 + 21999 + ... + 161999  делится на 17.

Прислать комментарий     Решение

Задача 60711

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 3
Классы: 7,8,9

Докажите, что если  6n + 11m  делится на 31, то  n + 7m  также делится на 31.

Прислать комментарий     Решение

Задача 60734

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Найдите такое n, чтобы число  10n – 1  делилось на  а) 7;  б) 13;  в) 91;  г) 819.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 407]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .