Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 168]
|
|
Сложность: 4- Классы: 9,10,11
|
При каких N числа от 1 до N можно расставить в другом порядке так, чтобы среднее арифметическое любой группы из двух или более подряд стоящих чисел не было целым?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Ваня задумал два положительных числа x и y. Он записал числа x + y, x – y, xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y.
а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел.
б) На доске выписано 100 целых чисел. Известно, что для любых
восьми из этих чисел найдутся такие девять из этих чисел, что среднее
арифметическое этих восьми чисел равно среднему арифметическому этих девяти
чисел. Докажите, что все числа равны.
|
|
Сложность: 4- Классы: 8,9,10
|
Показать, что если a > b > 0, то разность между средним
арифметическим и средним геометрическим этих чисел находится между и
|
|
Сложность: 4- Классы: 8,9,10,11
|
Все целые числа произвольным образом разбиты на две группы. Доказать, что хотя бы в одной из групп найдутся три числа, одно из которых есть среднее арифметическое двух других.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 168]