ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 168]      



Задача 65554

Темы:   [ Средние величины ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

При каких N числа от 1 до N можно расставить в другом порядке так, чтобы среднее арифметическое любой группы из двух или более подряд стоящих чисел не было целым?

Прислать комментарий     Решение

Задача 65558

Темы:   [ Средние величины ]
[ Принцип Дирихле (прочее) ]
[ Неравенство Коши ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Ваня задумал два положительных числа x и y. Он записал числа  x + y,  x – y,  xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y.

Прислать комментарий     Решение

Задача 98489

Темы:   [ Средние величины ]
[ Принцип крайнего (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
[ Системы линейных уравнений ]
Сложность: 4-
Классы: 8,9

а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел.

б) На доске выписано 100 целых чисел. Известно, что для любых восьми из этих чисел найдутся такие девять из этих чисел, что среднее арифметическое этих восьми чисел равно среднему арифметическому этих девяти чисел. Докажите, что все числа равны.

Прислать комментарий     Решение

Задача 109015

Темы:   [ Средние величины ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10

Показать, что если  a > b > 0,  то разность между средним арифметическим и средним геометрическим этих чисел находится между     и  

Прислать комментарий     Решение

Задача 109171

Темы:   [ Средние величины ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 4-
Классы: 8,9,10,11

Все целые числа произвольным образом разбиты на две группы. Доказать, что хотя бы в одной из групп найдутся три числа, одно из которых есть среднее арифметическое двух других.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 168]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .