Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 168]
Докажите, что из набора 0, 1, 2, ..., 3k – 1 можно выбрать 2k чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что из набора 0, 1, 2, ..., ½ (3k – 1) можно выбрать 2k чисел так, чтобы никакое из них не являлось средним арифметическим двух других выбранных чисел.
|
|
Сложность: 4 Классы: 9,10,11
|
Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой а) наибольшей; б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1, ½ (x1 + x2), ⅓ (x1 + x2 + x3), ..., 1/10 (x1 + x2 + ... + x10)?
в) Каков будет ответ, если чисел не 10, а n?
|
|
Сложность: 4 Классы: 8,9,10
|
Даны два набора из n вещественных чисел: a1, a2, ..., an и b1, b2, ..., bn. Докажите, что если выполняется хотя бы одно из двух условий:
а) из ai < aj следует, что bi ≤ bj;
б) из ai < a < aj, где a = 1/n (a1 + a2 + ... + an), следует, что bi ≤ bj,
то верно неравенство n(a1 b1 + a2b2 + ... + anbn) ≥ (a1 + a2 + ... + an)(b1 + b2 + ... + bn).
Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
а) это можно сделать, если N + 1 – квадрат целого числа.
б) если это можно сделать, то N + 1 – квадрат целого числа.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 168]