ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 168]      



Задача 65261

Темы:   [ Задачи на проценты и отношения ]
[ Средние величины ]
Сложность: 3+
Классы: 8,9,10,11

Город считается миллионером, если в нем живет более миллиона человек. Вероятность какого события больше:
  A = {наугад выбранный городской житель живет в городе миллионере} или
  B = {наугад выбранный город – город-миллионер}?

Возьмите статистику численности городского населения России с сайта http://www.perepis2002.ru/ct/doc/1_TOM_01_05.xls. Проверьте, справедлив ли для России ваш вывод, сделанный ранее. Для этого подсчитайте вероятность того, что наугад выбранный городской житель живёт в городе-миллионере, и вероятность того, наугад выбранный город – миллионер, и сравните их.

Прислать комментарий     Решение

Задача 65285

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?

Прислать комментарий     Решение

Задача 65287

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 3+
Классы: 8,9,10,11

По условиям шахматного матча победителем объявляется тот, кто опередил соперника на две победы. Ничьи в счет не идут. Вероятности выигрыша у соперников одинаковы. Число результативных партий в таком матче – величина случайная. Найдите её математическое ожидание.

Прислать комментарий     Решение

Задача 65295

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 3+
Классы: 9,10,11

Игральную кость бросают шесть раз. Найдите математическое ожидание числа различных выпавших граней.

Прислать комментарий     Решение

Задача 65301

Темы:   [ Математическая статистика ]
[ Средние величины ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенство треугольника (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Длина гипотенузы прямоугольного треугольника равна 3.
  а) Рассеянный Учёный вычислил дисперсию длин сторон этого треугольника и нашёл, что она равняется 2. Не ошибся ли он в расчетах?
  б) Какое наименьшее стандартное отклонение сторон может иметь такой прямоугольный треугольник? Какие у него при этом катеты?

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 168]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .