ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что в треугольнике угол A острый тогда и только тогда, когда ma > a/2.

Вниз   Решение


В треугольной пирамиде PABC боковое ребро PB перпендикулярно плоскости основания ABC , PB = 6 , AB = BC = , AC = 2 . Сфера, центр O которой лежит на грани ABP , касается плоскостей остальных граней пирамиды. Найдите расстояние от центра O сферы до ребра AC .

ВверхВниз   Решение


У Вани работает 10 сотрудников. Каждый месяц Ваня повышает зарплату на 1 рубль ровно девятерым (по своему выбору).
Как Ване повышать зарплаты, чтобы сделать их одинаковыми? (Зарплата – целое число рублей.)

ВверхВниз   Решение


Имеются 12-литровый бочонок, наполненный квасом, и два пустых бочонка – в 5 и 8 л. Попробуйте, пользуясь этими бочонками:
  а) разделить квас на две части – 3 и 9 л;
  б) разделить квас на две равные части.

ВверхВниз   Решение


На тарелке лежат 9 разных кусочков сыра. Всегда ли можно разрезать один из них на две части так, чтобы полученные 10 кусочков делились бы на две порции равной массы по 5 кусочков в каждой?

ВверхВниз   Решение


Игра с «доминошками». Дана клетчатая доска 10×10. За ход разрешается покрыть любые две соседние клетки доминошкой (прямоугольником размером 1×2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Докажите, что серединный перпендикуляр к отрезку есть геометрическое место точек, равноудалённых от концов этого отрезка.

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 630]      



Задача 97951

Темы:   [ Четность и нечетность ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Рассматриваются всевозможные пары  (a, b)  натуральных чисел, где  a < b.  Некоторые пары объявляются чёрными, остальные – белыми.
Можно ли это сделать так, чтобы для любых натуральных a и d среди пар  (a, a + d),  (a, a + 2d),  (a + d, a + 2d)  встречались и чёрные, и белые?

Прислать комментарий     Решение

Задача 98315

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

а) Может ли случиться, что в компании из 10 девочек и 9 мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
б) А если девочек 11, а мальчиков 10?

Прислать комментарий     Решение

Задача 98454

Темы:   [ Четность и нечетность ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9

Несколько последовательных натуральных чисел выписали в строку в таком порядке, что сумма каждых трёх подряд идущих чисел делится на самое левое число этой тройки. Какое максимальное количество чисел могло быть выписано, если последнее число строки нёчётно?

Прислать комментарий     Решение

Задача 104019

Темы:   [ Четность и нечетность ]
[ Прямоугольные треугольники (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9,10

На день рождения Олегу подарили набор равных треугольников со сторонами 3, 4 и 5 см. Олег взял все эти треугольники и сложил из них квадрат. Докажите, что треугольников было чётное количество.

Прислать комментарий     Решение

Задача 110223

Темы:   [ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 630]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .