Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 694]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существует ли такая бесконечная последовательность, состоящая из
а) действительных
б) целых
чисел, что сумма любых десяти подряд идущих чисел положительна, а сумма любых первых подряд идущих 10n + 1 чисел отрицательна при любом натуральном n?
|
|
Сложность: 3+ Классы: 9,10
|
Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.
Верно ли, что её двадцатый член также является натуральным числом?
|
|
Сложность: 3+ Классы: 8,9,10
|
На доску последовательно выписываются числа a1 = 1, a2, a3, ... по следующим правилам: an+1 = an – 2, если число
an – 2 – натуральное и еще не выписано на доску, в противном случае an+1 = an + 3. Докажите, что все квадраты натуральных чисел появятся в этой последовательности при прибавлении 3 к предыдущему числу.
|
|
Сложность: 3+ Классы: 9,10
|
Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством: – простое при всех k = 1, 2, ..., n?
|
|
Сложность: 3+ Классы: 8,9,10
|
Двадцать детей – десять мальчиков и десять девочек – встали в ряд. Каждый мальчик сказал, сколько детей стоит справа от него, а каждая девочка – сколько детей стоит слева от неё. Докажите, что сумма чисел, названных мальчиками, равна сумме чисел, названных девочками.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 694]