ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 233]
Докажите, что числа Фибоначчи {Fn} удовлетворяют соотношению Получите отсюда равенство
arcctg 2 + arcctg 5 + arcctg 13 +...+ arcctg F2n + 1 +...=
Последовательность чисел x0, x1, x2,...задается условиями
x0 = 1, xn + 1 = axn (n Найдите наибольшее число a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого a?
Дана четвёрка ненулевых чисел a, b, c, d. Из неё получается новая ab, bc, cd, da по следующему правилу: каждое число умножается на следующее, четвёртое — на первое. Из новой четвёрки по этому же правилу получается третья и т.д. Доказать, что в полученной последовательности четвёрок никогда не встретится вновь четверка a, b, c, d, кроме случая, когда a = b = c = d = 1.
Назовем усреднением последовательности ak действительных чисел последовательность
a'k с общим членом a'k=
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 233]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке