Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 79]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Андрей Михайлович выписал на доску все возможные последовательности длины $2022$, состоящие из 1011 нулей и 1011 единиц. Назовём две последовательности
совместимыми, если они совпадают ровно в 4 позициях. Докажите, что Андрей Михайлович может разбить все последовательности на 20 групп так, чтобы никакие две совместимые последовательности не попали в одну группу.
|
|
Сложность: 4 Классы: 8,9,10
|
Дана последовательность
...,
a-n,...,
a-1,
a0,
a1,...,
an,...
бесконечная в обе стороны, причём каждый её член равен
суммы
двух соседних. Доказать, что если какие-то два её члена равны, то в ней есть
бесконечное число пар равных между собой чисел. (Пояснение: два члена, про
которые известно, что они равны, не обязательно соседние).
В некотором царстве, в некотором государстве было выпущено неограниченное
количество монет достоинством в n1, n2, n3, ... копеек, где
n1 < n < 2 < n3 < ... – бесконечная последовательность, состоящая из натуральных чисел. Докажите, что эту последовательность можно оборвать, то есть найдётся такое число N, что любую сумму, которую можно уплатить без сдачи выпущенными монетами, на самом деле можно уплатить только монетами достоинством в n1, n2, ..., nN копеек.
Неутомимые Фома и Ерёма строят последовательность. Сначала в последовательности
одно натуральное число. Затем они по очереди выписывают следующие числа: Фома
получает очередное число, прибавляя к предыдущему любую из его цифр, а Ерёма – вычитая из предыдущего любую из его цифр. Докажите, что какое-то число в этой последовательности повторится не меньше 100 раз.
|
|
Сложность: 4 Классы: 10,11
|
Рассмотрим последовательность, первые два члена которой равны 1 и 2 соответственно, а каждый следующий член – это наименьшее натуральное число, которое еще не встретилось в последовательности и которое не взаимно просто с предыдущим членом последовательности. Докажите, что каждое
натуральное число входит в эту последовательность.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 79]