Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 81]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Петя записал на компьютере число 1. Каждую секунду компьютер прибавляет к числу на экране сумму его цифр.
Может ли через какое-то время на экране появиться число 123456789?
|
|
Сложность: 3+ Классы: 8,9,10
|
Десятичные записи натуральных чисел выписаны подряд, начиная с единицы,
до некоторого n включительно: 12345678910111213...(n).
Существует ли такое n, что в этой записи все десять цифр встречаются
одинаковое количество раз?
|
|
Сложность: 4 Классы: 8,9,10
|
Барон Мюнхгаузен заявил Георгу Кантору, что он может выписать в ряд все натуральные числа без единицы так, что только конечное их число будет больше своего номера. Не хвастает ли барон?
|
|
Сложность: 4 Классы: 8,9,10
|
Последовательность натуральных чисел ai такова, что НОД(ai, aj) = НОД(i, j) для всех i ≠ j. Докажите, что ai = i для всех i ∈ N.
|
|
Сложность: 5- Классы: 9,10,11
|
Саша написал на доске ненулевую цифру и приписывает к ней справа
по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите,
что на доске не более 100 раз был написан точный квадрат.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 81]