Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 188]
|
|
Сложность: 4- Классы: 8,9,10
|
Натуральные числа m и n таковы, что m > n,
m не делится на n и имеет от деления на n тот же остаток,
что и m + n от деления на m – n.
Найдите отношение m : n.
|
|
Сложность: 4- Классы: 8,9,10
|
Найдите такое наименьшее чётное натуральное число a, что a + 1 делится на 3, a + 2 – на 5, a + 3 – на 7, a + 4 – на 11, a + 5 – на 13.
|
|
Сложность: 4- Классы: 8,9,10,11
|
У продавца и покупателя в сумме 1999 рублей монетами и купюрами в 1, 5, 10, 50, 100, 500 и 1000 рублей. Кот в мешке стоит целое число рублей, причём денег у покупателя достаточно. Докажите, что покупатель сможет купить кота, получив причитающуюся сдачу.
|
|
Сложность: 4- Классы: 9,10,11
|
Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа n, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на n.
|
|
Сложность: 4- Классы: 7,8,9,10
|
Докажите, что
а) если натуральное число n можно представить в виде n = 4k + 1, то существуют n нечётных натуральных чисел, сумма которых равна их произведению;
б) если n нельзя представить в таком виде, то таких n нечётных натуральных чисел не существует.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 188]