Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 367]
|
|
Сложность: 5 Классы: 10,11
|
Докажите, что для простого числа p вида 4k + 1 числа x = ± (2k)! являются решениями сравнения x² + 1 ≡ 0 (mod p).
|
|
Сложность: 5 Классы: 8,9,10
|
Найдите все такие натуральные n, что при некоторых взаимно простых x и y и натуральном k > 1, выполняется равенство 3n = xk + yk.
|
|
Сложность: 2 Классы: 5,6,7
|
Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав?
|
|
Сложность: 2 Классы: 5,6,7
|
При делении некоторого числа m на 13 и 15 получили одинаковые частные,
но первое деление было с остатком 8, а второе без остатка.
Найдите число m.
|
|
Сложность: 2 Классы: 7,8,9
|
Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 367]