Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 368]
Рассматриваются решения уравнения 1/x + 1/y = 1/p (p > 1), где x, y и p – натуральные числа. Докажите, что если p – простое число, то уравнение имеет ровно три решения; если p – составное, то решений больше трёх ((a, b) и (b, a) – различные решения, если a ≠ b).
|
|
|
Сложность: 3 Классы: 6,7,8
|
Фома и Ерёма нашли на дороге по пачке 11-рублевок. В чайной Фома выпил 3 стакана чая, съел 4 калача и 5 бубликов. Ерёма выпил 9 стаканов чая, съел 1 калач и 4 бублика. Стакан чая, калач и бублик стоят по целому числу рублей. Оказалось, что Фома может расплатиться 11-рублевками без сдачи. Покажите, что это может сделать и Ерёма.
|
|
|
Сложность: 3 Классы: 7,8,9
|
Укажите все такие натуральные n и целые неравные друг другу x и y, при которых верно равенство: x + x² + x4 + ... + x2n = y + y² + y4 + ... + y2n.
Конечно или бесконечно число натуральных решений уравнения x² + y³ = z²?
|
|
|
Сложность: 3 Классы: 7,8,9
|
Квадрат разрезали на 25 квадратиков, из которых ровно у одного сторона имеет длину, отличную от 1 (у каждого из остальных сторона равна 1).
Найдите площадь исходного квадрата.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 368]